本文共 2349 字,大约阅读时间需要 7 分钟。
在图论中,强连通分量(Strongly Connected Components, SCC)是指在有向图中,节点之间存在相互可达的最大子图。Tarjan算法和Kosaraju算法是解决强连通分量问题的两大经典方法。本文将详细阐述Tarjan算法的实现思路,并提供Objective-C的完整代码。
Tarjan算法的核心思想是通过深度优先搜索(DFS)遍历图,记录每个节点的访问顺序和最低访问顺序。如果一个节点是根节点(即没有其他节点指向它),则开始形成一个强连通分量。算法通过栈来维护当前的访问路径,直到找到一个完整的强连通分量。
以下是Objective-C实现Tarjan算法的完整代码:
#import#import "Graph.h"@interface Graph : NSObject@property (nonatomic, strong) NSMutableArray *nodes;@property (nonatomic, strong) NSMutableArray *edges;@property (nonatomic, strong) NSMutableArray *lowLink;@property (nonatomic, strong) NSMutableArray *onStack;@property (nonatomic, strong) NSMutableArray *sccs;@property (nonatomic, assign) int time;@property (nonatomic, assign) int index;@end@implementation Graph- (void)findScc { self.time = 0; self.index = 0; self.lowLink = [NSMutableArray new]; self.onStack = [NSMutableArray new]; self.sccs = [NSMutableArray new]; for (int i = 0; i < self.nodes.count; i++) { if ([self isUnvisited:i]) { [self visit:i]; } }}- (BOOL)isUnvisited:(int)i { return [self.nodes[i] == nil];}- (void)visit:(int)i { self.nodes[i] = [NSNumber numberWithInt: self.index++]; self.lowLink[i] = [NSNumber numberWithInt: self.index++]; [self push:i]; for (int j = 0; j < self.edges[i].count; j++) { int to = [self.edges[i][j]]; if ([self isUnvisited:to]) { [self visit:to]; } else if ([self.onStack[j] == to]) { self.lowLink[i] = [self.lowLink[i] intValue] < [self.lowLink[to] intValue] ? [self.lowLink[i]] : [self.lowLink[to]]; } } if ([self.lowLink[i] intValue] == [self.index]) { [self pop:i]; [self addScc:i]; }}- (void)push:(int)i { [self.onStack addObject: [NSNumber numberWithInt:i]];}- (void)pop:(int)i { [self.onStack removeLast];}- (void)addScc:(int)i { [self.sccs addObject: [NSNumber numberWithInteger:i]];}- (void)addEdge:(int)from to:(int)to { if ([self.isUnvisited:from] || [self.isUnvisited:to]) { [self.edges[from] addObject: to]; }}
通过上述代码,可以实现对有向图进行强连通分量的计算。代码主要包含以下几个部分:
通过以上实现,可以轻松地对任意有向图计算出其强连通分量,实现代码清晰且易于理解。
转载地址:http://hzifk.baihongyu.com/